An Evaluation Measure for Distributed Information Retrieval Systems
نویسندگان
چکیده
This paper is concerned with the evaluation of distributed and peer-to-peer information retrieval systems. A new measure is introduced that compares results of a distributed retrieval system to those of a centralised system, fully exploiting the ranking of the latter as an indicator of gradual relevance. Problems with existing evaluation approaches are verified experimentally.
منابع مشابه
Review of ranked-based and unranked-based metrics for determining the effectiveness of search engines
Purpose: Traditionally, there have many metrics for evaluating the search engine, nevertheless various researchers’ proposed new metrics in recent years. Aware of this new metrics is essential to conduct research on evaluation of the search engine field. So, the purpose of this study was to provide an analysis of important and new metrics for evaluating the search engines. Methodology: This is ...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملPerformance Evaluation of Medical Image Retrieval Systems Based on a Systematic Review of the Current Literature
Background and Aim: Image, as a kind of information vehicle which can convey a large volume of information, is important especially in medicine field. Existence of different attributes of image features and various search algorithms in medical image retrieval systems and lack of an authority to evaluate the quality of retrieval systems, make a systematic review in medical image retrieval system...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملTowards Evaluation of Peer-to-Peer-based Distributed Information Management Systems
Distributed knowledge management systems (DKMS) have been suggested to meet the requirements of today’s knowledge management. Peer-to-peer systems offer technical foundations for such distributed systems. To estimate the value of P2P-based knowledge management evaluation criteria that measure the performance of such DKMS are required. We suggest a concise framework for evaluation of such system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008